3.376 \(\int \frac{1}{(a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=117 \[ \frac{\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{\sin (c+d x)}{2 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}} \]

[Out]

(ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d*x]]*Sqrt[
Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) + Sin[c + d*x]/(2*d*(a + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.215751, antiderivative size = 117, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {4222, 2764, 12, 2782, 205} \[ \frac{\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{\sin (c+d x)}{2 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d*x]]*Sqrt[
Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) + Sin[c + d*x]/(2*d*(a + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]])

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2764

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a*d*n - b*c*(m + 1) - b*d*(m + n + 1)*Sin[
e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && (IntegersQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{(a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\cos (c+d x)}}{(a+a \cos (c+d x))^{3/2}} \, dx\\ &=\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{a}{2 \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{2 a^2}\\ &=\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{4 a}\\ &=\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}-\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{2 d}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{2 \sqrt{2} a^{3/2} d}+\frac{\sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.425541, size = 140, normalized size = 1.2 \[ \frac{\cos \left (\frac{1}{2} (c+d x)\right ) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\sec (c+d x)} \left (\sqrt{\cos (c+d x)+1} \sin ^{-1}\left (\frac{\sin \left (\frac{1}{2} (c+d x)\right )}{\sqrt{\cos ^2\left (\frac{1}{2} (c+d x)\right )}}\right )+2 \sin \left (\frac{1}{2} (c+d x)\right ) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}}\right )}{2 a d \sqrt{a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(Cos[(c + d*x)/2]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[Sec[c + d*x]]*(ArcSin[Sin[(c + d*x)/2]/Sqrt[Cos[(
c + d*x)/2]^2]]*Sqrt[1 + Cos[c + d*x]] + 2*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sin[(c + d*x)/2]))/(2*a*d*Sqr
t[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

Maple [A]  time = 0.39, size = 156, normalized size = 1.3 \begin{align*} -{\frac{\cos \left ( dx+c \right ) \sqrt{2} \left ( -1+\cos \left ( dx+c \right ) \right ) ^{2}}{4\,{a}^{2}d \left ( \sin \left ( dx+c \right ) \right ) ^{5}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( \sqrt{2}\cos \left ( dx+c \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}+\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) -\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \right ){\frac{1}{\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}}} \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+cos(d*x+c)*a)^(3/2)/sec(d*x+c)^(1/2),x)

[Out]

-1/4/d*2^(1/2)/a^2*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*(-1+cos(d*x+c))^2*(2^(1/2)*cos(d*x+c)*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)+arcsin((-1+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)-2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))/(1/c
os(d*x+c))^(1/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((a*cos(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [A]  time = 1.89708, size = 351, normalized size = 3. \begin{align*} -\frac{\sqrt{2}{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) - 2 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-1/4*(sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d
*x + c))/(sqrt(a)*sin(d*x + c))) - 2*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x
+ c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))**(3/2)/sec(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((a*cos(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c))), x)